Compuestos fenólicos vegetales y su encapsulación: Análisis bibliométrico enfocado en especies subvaloradas del Perú

Autores/as

DOI:

https://doi.org/10.17268/agrosci.2025.014

Palabras clave:

algarrobo, mashua, guama, cañihua, clean-label, atomización, nanoencapsulación

Resumen

La inestabilidad térmica y oxidativa de los compuestos fenólicos vegetales dificulta su incorporación directa en alimentos. Para evaluar las soluciones disponibles, se analizaron 86 artículos de Scopus (2014 - 2025) sobre tecnologías de encapsulación, con énfasis en cuatro cultivos peruanos: algarrobo (Prosopis pallida), guama (Inga edulis), mashua negra (Tropaeolum tuberosum) y cañihua (Chenopodium pallidicaule). Los mapas de coocurrencia (VOSviewer®) muestran predominio de spray-drying y nanoencapsulación con biopolímeros, empleando principalmente maltodextrina, goma arábiga y quitosano. Los mejores resultados se obtuvieron con algarrobo (92% de eficiencia y > 85% de retención antioxidante) y con extractos de guama tratados por CO₂ supercrítico (pérdidas < 5 %). En mashua, la liofilización conservó el 88% de la capacidad FRAP, mientras que nanoemulsiones de cañihua mejoraron la bioaccesibilidad intestinal sin afectar la calidad sensorial del pan integral. El análisis temporal revela un cambio de foco: de estudios de digestión y estabilidad (2014 - 2018) a aplicaciones antimicrobianas y matrices sostenibles (2019 - 2025). Persisten vacíos en biodisponibilidad clínica y escalado industrial, sobre todo para guama y cañihua. Estos hallazgos orientan el desarrollo de ingredientes funcionales con identidad peruana y subrayan la necesidad de optimizar procesos que protejan fenoles termolábiles.

Citas

Alemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119, 665-674. https://doi.org/10.1016/j.foodres.2018.10.044

Azizkhani, M., & Sodanlo, A. (2021). Antioxidant activity of Eryngium campestre L., Froriepia subpinnata, and Mentha spicata L. polyphenolic extracts nanocapsulated in chitosan and maltodextrin. Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.15120

Bassan, L. T., Nascimento, K. R., Choquetico Iquiapaza, I. Y., da Silva Ferreira, M. E., Tapia-Blacido, D. R., Fabi, J. P., & Martelli-Tosi, M. (2025). Chitosan suspension enriched with phenolics extracted from pineapple by-products as bioactive coating for liposomes: Physicochemical properties and in vitro cytotoxicity. Food Research International, 201. https://doi.org/10.1016/j.foodres.2024.115571

Bergesse, A. E., Asensio, C. M., Quiroga, P. R., Ryan, L. C., Grosso, N. R., & Nepote, V. (2023). Microencapsulation of phenolic compounds extracted from soybean seed coats by spray-drying. Journal of Food Science, 88(11), 4457-4471. https://doi.org/10.1111/1750-3841.16775

Brito de Souza, V., Thomazini, M., Chaves, I. E., Ferro-Furtado, R., & Favaro-Trindade, C. S. (2020). Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocolloids, 98. https://doi.org/10.1016/j.foodhyd.2019.105244

Castañeta, G., Miranda-Flores, D., Bascopé, M., & Peñarrieta, J. M. (2024). Characterization of carotenoids, proximal analysis, phenolic compounds, anthocyanidins and antioxidant capacity of an underutilized tuber (Tropaeolum tuberosum) from Bolivia. Discover Food, 4(1). https://doi.org/10.1007/s44187-024-00078-8

Chabni, A., Bañares, C., Sanchez-Rey, I., & Torres, C. F. (2025). Active Biodegradable Packaging Films Based on the Revalorization of Food-Grade Olive Oil Mill By-Products. Applied Sciences, 15(1), Article 1. https://doi.org/10.3390/app15010312

Chauhan, K., & Rao, A. (2024). Clean-label alternatives for food preservation: An emerging trend. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e35815

Chen, X., Chhun, S., Xiang, J., Tangjaidee, P., Peng, Y., & Quek, S. Y. (2021). Microencapsulation of Cyclocarya paliurus (Batal.) iljinskaja extracts: A promising technique to protect phenolic compounds and antioxidant capacities. Foods, 10(12). https://doi.org/10.3390/foods10122910

Chirinos, R., Pedreschi, R., Cedano, I., & Campos, D. (2015). Antioxidants from Mashua (Tropaeolum tuberosum) Control Lipid Oxidation in Sacha Inchi (Plukenetia volubilis L.) Oil and Raw Ground Pork Meat. Journal of Food Processing and Preservation, 39(6), 2612-2619. https://doi.org/10.1111/jfpp.12511

Coloma, A., Flores-Mamani, E., Quille-Calizaya, G., Zaira-Churata, A., Apaza-Ticona, J., Calsina-Ponce, W. C., Huata-Panca, P., Inquilla-Mamani, J., & Huanca-Rojas, F. (2022). Characterization of Nutritional and Bioactive Compound in Three Genotypes of Mashua (Tropaeolum tuberosum Ruiz and Pavón) from Different Agroecological Areas in Puno. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7550987

da Silva, T. E. B., de Oliveira, Y. P., de Carvalho, L. B. A., dos Santos, J. A. B., dos Santos Lima, M., Fernandes, R., de Assis, C. F., & Passos, T. S. (2025). Nanoparticles based on whey and soy proteins enhance the antioxidant activity of phenolic compound extract from Cantaloupe melon pulp flour (Cucumis melo L.). Food Chemistry, 464. https://doi.org/10.1016/j.foodchem.2024.141738

de Freitas, F. A., Araújo, R. C., Soares, E. R., Nunomura, R. C. S., da Silva, F. M. A., da Silva, S. R. S., de Souza, A. Q. L., de Souza, A. D. L., Franco-Montalbán, F., Acho, L. D. R., Lima, E. S., Bataglion, G. A., & Koolen, H. H. F. (2018). Biological evaluation and quantitative analysis of antioxidant compounds in pulps of the Amazonian fruits bacuri (Platonia insignis Mart.), ingá (Inga edulis Mart.), and uchi (Sacoglottis uchi Huber) by UHPLC-ESI-MS/MS. Journal of Food Biochemistry, 42(1). https://doi.org/10.1111/jfbc.12455

Fonseca, L. M., Radünz, M., dos Santos Hackbart, H. C., da Silva, F. T., Camargo, T. M., Bruni, G. P., Monks, J. L. F., da Rosa Zavareze, E., & Dias, A. R. G. (2020). Electrospun potato starch nanofibers for thyme essential oil encapsulation: Antioxidant activity and thermal resistance. Journal of the Science of Food and Agriculture, 100(11), 4263-4271. https://doi.org/10.1002/jsfa.10468

Gonzales, U., Dijkshoorn, R., Maloncy, M., Finimundy, T., Calhelha, R. C., Pereira, C., Stojković, D., Soković, M., Ferreira, I. C. F. R., Barros, L., & Cadavez, V. (2020). Nutritive and bioactive properties of mesquite (Prosopis pallida) flour and its technological performance in breadmaking. Foods, 9(5). https://doi.org/10.3390/foods9050597

Han, Q., Zhang, X., Nian, H., Liu, H., Li, X., Zhang, R., & Bao, J. (2022). Artificial rearing alters intestinal microbiota and induces inflammatory response in piglets. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1002738

Hunsub, P., Ngamprasertsith, S., Prichapan, N., Sakdasri, W., Karnchanatat, A., & Sawangkeaw, R. (2025). Life cycle assessment of spray-drying encapsulation of crude peptides produced from defective green coffee beans. Clean Technologies and Environmental Policy, 27(3), 1535-1550. https://doi.org/10.1007/s10098-024-02913-z

Liew, S. Y., Mohd Zin, Z., Mohd Maidin, N. M., Mamat, H., & Zainol, M. K. (2020). Effect of the different encapsulation methods on the physicochemical and biological properties of Clitoria ternatea flowers microencapsulated in gelatine. Food Research, 4(4), 1098-1108. https://doi.org/10.26656/fr.2017.4(4).033

Marković, J., Salević-Jelić, A., Milinčić, D., Gašić, U., Pavlović, V., Rabrenović, B., Pešić, M., Lević, S., Mihajlović, D., & Nedović, V. (2025). Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. Food Chemistry, 464. https://doi.org/10.1016/j.foodchem.2024.141777

Mohammadi, A., Jafari, S. M., Esfanjani, A. F., & Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 190, 513-519. https://doi.org/10.1016/j.foodchem.2015.05.115

Ortiz, J., Ibieta, G., Tullberg, C., Peñarrieta, J. M., & Linares-Pastén, J. A. (2024). Chemical Characterisation of New Oils Extracted from Cañihua and Tarwi Seeds with Different Organic Solvents. Foods, 13(13). https://doi.org/10.3390/foods13131982

Ozgolet, M., Belkacemi, L., & Arici, M. (2025). Enhancing the nutritional and textural properties of gluten-free shortbread biscuits: The potential of white-fleshed sweet potato flour blended with corn starch. Journal of Food Science, 90(3). https://doi.org/10.1111/1750-3841.70123

Pereira, M. C., Oliveira, D. A., Hill, L. E., Zambiazi, R. C., Borges, C. D., Vizzotto, M., Mertens-Talcott, S., Talcott, S., & Gomes, C. L. (2018). Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry, 240, 396-404. https://doi.org/10.1016/j.foodchem.2017.07.144

Pilatti, D., dos Santos, D. F., Meinhart, A. D., Knapp, M. A., Hackbart, H. C. D. S., & Pinto, V. Z. (2019). Impact of the use of saccharides in the encapsulation of Ilex paraguariensis extract. Food Research International, 125. https://doi.org/10.1016/j.foodres.2019.108600

Quispe, C., Petroll, K., Theoduloz, C., & Schmeda-Hirschmann, G. (2014). Antioxidant effect and characterization of South American Prosopis pods syrup. Food Research International, 56, 174-181. https://doi.org/10.1016/j.foodres.2013.12.033

Radünz, M., Mota Camargo, T., dos Santos Hackbart, H. C., Blank, J. P., Hoffmann, J. F., Moro Stefanello, F., & da Rosa Zavareze, E. (2021). Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities. Food Chemistry, 339. https://doi.org/10.1016/j.foodchem.2020.128075

Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115-122. https://doi.org/10.1016/j.foodchem.2016.09.207

Rodriguez, I. F., Pérez, M. J., Cattaneo, F., Zampini, I. C., Cuello, A. S., Mercado, M. I., Ponessa, G., & Isla, M. I. (2019). Morphological, histological, chemical and functional characterization of Prosopis alba flours of different particle sizes. Food Chemistry, 274, 583-591. https://doi.org/10.1016/j.foodchem.2018.09.024

Rodsamran, P., & Sothornvit, R. (2018). Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film. Food Chemistry, 242, 239-246. https://doi.org/10.1016/j.foodchem.2017.09.064

Tomé, A. C., & da Silva, F. A. (2022). Alginate based encapsulation as a tool for the protection of bioactive compounds from aromatic herbs. Food Hydrocolloids for Health, 2. https://doi.org/10.1016/j.fhfh.2021.100051

Tranquilino, E., Martínez-Flores, H. E., Rodiles-López, J. O., & Martínez-Avila, G. C. G. (2021). Nanoencapsulation and identification of phenolic compounds by UPLC-Q/TOF-MS2of an antioxidant extract from Opuntia atropes. Functional Foods in Health and Disease, 10(12), 505-519. https://doi.org/10.31989/FFHD.V10I12.763

Veggi, P. C., Cavalcanti, R. N., & Meireles, M. A. A. (2023). Production of phenolic-rich extracts from Brazilian plants using supercritical and subcritical fluid extraction: Experimental data and economic evaluation. Journal of Food Engineering, 131, 96-109. https://doi.org/10.1016/j.jfoodeng.2014.01.027

Villanueva Haro, S. R. (2025). Microencapsulación del extracto acuoso de Verbena officinalis L. (Verbena) mediante secado por aspersión y la eficiencia bioactiva en la digestión gastrointestinal in vitro. Tesis de grado. Universidad Nacional Agraria de la Selva.

Zorzenon, M. R. T., Formigoni, M., da Silva, S. B., Hodas, F., Piovan, S., Ciotta, S. R., Jansen, C. A., Dacome, A. S., Pilau, E. J., Mareze-Costa, C. E., Milani, P. G., & Costa, S. C. (2020). Spray drying encapsulation of stevia extract with maltodextrin and evaluation of the physicochemical and functional properties of produced powders. Journal of Food Science, 85(10), 3590-3600. https://doi.org/10.1111/1750-3841.15437

Descargas

Publicado

02-02-2026

Cómo citar

Layza, O. (2026). Compuestos fenólicos vegetales y su encapsulación: Análisis bibliométrico enfocado en especies subvaloradas del Perú. AgroScience Research, 3(2), 115–124. https://doi.org/10.17268/agrosci.2025.014

Número

Sección

Artículos